SpringBoot项目使用协同过滤的实现

  import org.apache.mahout.cf.taste.common.TasteException;

  import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;

  import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;

  import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;

  import org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSimilarity;

  import org.apache.mahout.cf.taste.model.DataModel;

  import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;

  import org.apache.mahout.cf.taste.recommender.RecommendedItem;

  import org.apache.mahout.cf.taste.recommender.UserBasedRecommender;

  import org.apache.mahout.cf.taste.similarity.UserSimilarity;

  import java.io.File;

  import java.io.IOException;

  import java.util.List;

  public class RecommendationService {

  private UserBasedRecommender recommender;

  public RecommendationService() {

  try {

  // 加载评分数据文件

  DataModel model = new FileDataModel(new File("ratings.csv"));

  // 构建用户相似度计算器

  UserSimilarity similarity = new EuclideanDistanceSimilarity(model);

  // 构建用户邻居关系

  UserNeighborhood neighborhood = new NearestNUserNeighborhood(3, similarity, model);

  // 构建基于用户的推荐器

  recommender = new GenericUserBasedRecommender(model, neighborhood, similarity);

  } catch (IOException | TasteException e) {

  e.printStackTrace();

  }

  }

  public List getRecommendations(long userId, int numItems) throws TasteException {

  // 生成推荐结果

  return recommender.recommend(userId, numItems);

  }

  }